首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   38篇
  国内免费   14篇
化学   278篇
晶体学   1篇
力学   6篇
综合类   17篇
数学   18篇
物理学   39篇
  2023年   8篇
  2022年   4篇
  2021年   35篇
  2020年   33篇
  2019年   13篇
  2018年   7篇
  2017年   16篇
  2016年   19篇
  2015年   16篇
  2014年   16篇
  2013年   15篇
  2012年   21篇
  2011年   14篇
  2010年   12篇
  2009年   11篇
  2008年   14篇
  2007年   10篇
  2006年   7篇
  2005年   15篇
  2004年   9篇
  2003年   4篇
  2002年   4篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有359条查询结果,搜索用时 421 毫秒
1.
For the modification of medically useful biomaterials from bacterially synthesized cellulose, fleeces of Acetobacter xylinum have been produced in the presence of 0.5, 1.0, and 2.0% (m/v) carboxymethylcellulose (CMC), methylcellulose (MC), and poly(vinyl alcohol) (PVA), respectively, in the Hestrin-Schramm culture medium. The incorporation of the water-soluble polymers into cellulose and their influence on the structure, crystal modifications, and material properties are described. With IR and solid-state 13C NMR spectroscopy of the fleeces, the presence of the cellulose ethers and an increase in the amorphous parts of the cellulose modifications (NMR results) have been detected. The incorporation is represented by a higher product yield, too. As demonstrated by scanning electron microscopy, a porelike cellulose network structure forms in the presence of CMC and MC. This modified structure increases the water retention ability (expressed as the water content), the ion absorption capacity, and the remaining nitrogen-containing residues from the culture medium or bacteria cells. The water content of bacterial cellulose (BC) in the never dried state and the freeze-dried, reswollen state can be controlled by the CMC concentration in the culture solution. The freeze-dried, reswollen BC-CMC (2.0%) contains 96% water after centrifugation, whereas standard BC has only 73%. About 98% water is included in a BC-MC composite in the wet state, and about 93% is included in the reswollen state synthesized in the presence of 0.5, 1.0, or 2.0% MC. These biomaterial composites can be stored in the dried state and reswollen before use, reaching a higher water absorption than pure, never dried BC. The copper ion capacity of BC-CMC composites increases proportionally with the added amount of CMC. BC-CMC (0.5%) can absorb 3 times more copper ions than original BC. In the case of 0.5 and 1.0% PVA additions to the culture solution, this polymer cannot be detected in the cellulose fleeces after they are washed. Nevertheless the presence of PVA in the culture medium effects a decreased product yield, a retention of nitrogen-containing residues in the material during purification, a reduced water absorption ability, and a slightly higher copper ion capacity in comparison with original BC. The water content of freeze-dried, reswollen BC-PVA (0.5%) is only 62%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 463–470, 2004  相似文献   
2.
The fluorescence dynamics parameters of the fluorescent transient flavin-luciferase species from the typesVibrio fischeri andPhotobacterium leiognathi are presented. The fluorescence anisotropy decay is a single exponential function for both types. The correlation time is 70 ns for theP. leiognathi fluorescent transient intermediate (2°C, aqueous buffer, pH 7.0), consistent with the rotational correlation time of the luciferase macromolecule (77 kD) to which the flavin fluorophore is rigidly attached. In contrast, for theV. fischeri species the observed correlation time for the anisotropy decay function is 133 ns. This suggests that protein self-association occurs in theV. fischeri case and this is confirmed by filtration, where the fluorescent transient fromV. fischeri does not pass through a 100,000 molecular weight cutoff membrane, whereas theP. leiognathi species does. The filtration method also demonstrates self-association in the luciferase peroxyflavin and photoflavin fromV. fischeri. A monomer-dimer equilibrium also explains the previously reported high correlation times for theV. harveyi luciferase-flavin species. It is proposed that the self-association competes with the lumazine protein interaction in the bioluminescence reaction.  相似文献   
3.
2‐Amino‐4‐ethoxycarbonylpyridine 1 was used as a starting material in the synthesis of some 4‐substituted‐N1‐2‐pyridylsulfanilamide derivatives to evaluate their antimicrobial activity. The obtained compounds were of no particular effect against the tested organisms except for a noticeable inhibition of B. subtilis, which was of varying extents but remained clearly significant.  相似文献   
4.
The synthesis of norvancomycin (NVan)-capped silver nanoparticles (Ag@NVan) and their notable in vitro antibacterial activities against E. coli, a Gram-negative bacterial strain (GNB), are reported here. Mercaptoacetic acid-stabilized spherical silver nanoparticles with a diameter of 16±4 nm are prepared by a simple chemical reaction. The formation process of the silver nanoparticles is investigated by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). NVan is then grafted to the terminal carboxyl of the mercaptoacetic acid in the presence of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC). The TEM images of single bacteria treated with Ag@NVan show that plenty of Ag@NVan aggregate in the cell wall of E. coli. A possible antibacterial mechanism is proposed that silver nanoparticles may help destroy the stability of the outer membrane of E. coli, which makes NVan easier to bind to the nether part of the peptidoglycan structure. The antibacterial activities of silver nanoparticles on their own, together with the rigid polyvalent interaction between Ag@NVan and cell wall, enables Ag@NVan to be an effective inhibitor of GNB. This kind of bionanocomposites might be used as novel bactericidal materials and we also provide an effective synthesis method for preparing functional bioconjugated nanoparticles here. Supported by the National Natural Science Foundation of China (Grant No. 50373036) and Fok Ying Tung Education Foundation (Grant No. J20040212)  相似文献   
5.
A luminescent bacterial biosensor was used to quantify bioavailable arsenic in artificial groundwater. Its light production above the background emission was proportional to the arsenite concentration in the toxicologically relevant range of 0 to 0.5 μM. Effects of the inorganic solutes phosphate, Fe(II) and silicate on the biosensor signal were studied. Phosphate at a concentration of 0.25 g L−1 phosphate slightly stimulated the light emission, but much less than toxicologically relevant concentrations of the much stronger inducer arsenite. No effect of phosphate was oberved in the presence of arsenite. Freshly prepared sodium silicate solution at a concentration of 10 mg L−1 Si reduced the arsenite-induced light production by roughly 37%, which can be explained by transient polymerization leading to sequestration of some arsenic. After three days of incubation, silicate did not have this effect anymore, probably because depolymerization occurred. In the presence of 0.4 mg L−1 Fe(II), the arsenite-induced light emission was reduced by up to 90%, probably due to iron oxidation followed by arsenite adsorption on the less soluble Fe(III) possibly along with some oxidation to the stronger adsorbing As(V). Addition of 100 μM EDTA was capable of releasing all arsenic from the precipitate and to transform it into the biologically measurable, dissolved state. The biosensor also proved valuable for monitoring the effectiveness of an arsenic removal procedure based on water filtration through a mixture of sand and iron granules.  相似文献   
6.
本文对几种人工光合作用反应中心系统,做一个简单的综述,其中包括叶绿素和细菌叶绿素二聚体,卟啉二聚体,卟啉-苯醌共价键络合物以及其他合成中心。  相似文献   
7.
Abstract

Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including wound dressing, tissue engineering scaffolds, and drug delivery. Special emphasis is placed on the fabrication and applications of BC-containing nanofibrous composites for biomedical usage. It summarizes electrospinning of BC-based nanofibers and their surface modification with an outline on challenges and future perspective.  相似文献   
8.
We report the design and validation of a fast empirical function for scoring RNA-ligand interactions, and describe its implementation within RiboDock, a virtual screening system for automated flexible docking. Building on well-known protein-ligand scoring function foundations, features were added to describe the interactions of common RNA-binding functional groups that were not handled adequately by conventional terms, to disfavour non-complementary polar contacts, and to control non-specific charged interactions. The results of validation experiments against known structures of RNA-ligand complexes compare favourably with previously reported methods. Binding modes were well predicted in most cases and good discrimination was achieved between native and non-native ligands for each binding site, and between native and non-native binding sites for each ligand. Further evidence of the ability of the method to identify true RNA binders is provided by compound selection ('enrichment factor') experiments based around a series of HIV-1 TAR RNA-binding ligands. Significant enrichment in true binders was achieved amongst high scoring docking hits, even when selection was from a library of structurally related, positively charged molecules. Coupled with a semi-automated cavity detection algorithm for identification of putative ligand binding sites, also described here, the method is suitable for the screening of very large databases of molecules against RNA and RNA-protein interfaces, such as those presented by the bacterial ribosome.  相似文献   
9.
In this study, we focused on the surface character of bacterial cellulose (BC) before and after oxidation mediated by 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO).Solid‐state 13C NMR, XPS, SEM, contact angle and surface free energy analyses were performed to investigate the effects of various parameters (reaction time and oxidant and catalyst concentrations) on the surface composition, morphology and polarity of the BC. The results provided by the combined use of these techniques showed that hydrogen bonds were disrupted on the BC surface after carboxylation occurred; therefore, the surface of oxidized BC was rougher than that of the original BC, and the surface free energy, especially the polar components, increased after oxidation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
High aspect ratio, sugar-decorated 2D nanosheets are ideal candidates for the capture and agglutination of bacteria. Herein, the design and synthesis of two carbohydrate-based Janus amphiphiles that spontaneously self-assemble into high aspect ratio 2D sheets are reported. The unique structural features of the sheets include the extremely high aspect ratio and dense display of galactose on the surface. These structural characteristics allow the sheet to act as a supramolecular 2D platform for the capture and agglutination of E. coli through specific multivalent noncovalent interactions, which significantly reduces the mobility of the bacteria and leads to the inhibition of their proliferation. Our results suggest that the design strategy demonstrated here can be applied as a general approach for the crafting of biomolecule-decorated 2D nanosheets, which can perform as 2D platforms for their interaction with specific targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号